Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Neuroscience Bulletin ; (6): 434-446, 2019.
Article in English | WPRIM | ID: wpr-775427

ABSTRACT

The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells (OPCs) to differentiate, since OPCs and oligodendrocyte-lineage cells that are unable to fully differentiate are found in the areas of demyelination. Thus, promoting the differentiation of OPCs is vital for the treatment of demyelinating diseases. Shikimic acid (SA) is mainly derived from star anise, and is reported to have anti-influenza, anti-oxidation, and anti-tumor effects. In the present study, we found that SA significantly promoted the differentiation of cultured rat OPCs without affecting their proliferation and apoptosis. In mice, SA exerted therapeutic effects on experimental autoimmune encephalomyelitis (EAE), such as alleviating clinical EAE scores, inhibiting inflammation, and reducing demyelination in the CNS. SA also promoted the differentiation of OPCs as well as their remyelination after lysolecithin-induced demyelination. Furthermore, we showed that the promotion effect of SA on OPC differentiation was associated with the up-regulation of phosphorylated mTOR. Taken together, our results demonstrated that SA could act as a potential drug candidate for the treatment of demyelinating diseases.


Subject(s)
Animals , Female , Rats , Apoptosis , Cell Differentiation , Cell Proliferation , Cells, Cultured , Demyelinating Diseases , Encephalitis , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Myelin Basic Protein , Metabolism , Neuroprotective Agents , Oligodendrocyte Precursor Cells , Metabolism , Remyelination , Shikimic Acid , TOR Serine-Threonine Kinases , Metabolism
2.
Journal of Southern Medical University ; (12): 950-956, 2019.
Article in Chinese | WPRIM | ID: wpr-773507

ABSTRACT

OBJECTIVE@#To investigate the effects of different doses of propofol on myelin basic protein (MBP) synthesis and myelination of oligodendrocytes in neonatal SD rats.@*METHODS@#A total of 57 neonatal SD rats (7 days old) were randomly divided into control group (=13), vehicle (fat emulsion) group (=5), and 25, 50 and 100 mg/kg propofol groups (=13 in each group). Eight hours after a single intraperitoneal injection of propofol or the vehicle, the rats were examined for expressions of mRNA, caspase-3 mRNA, cleaved caspase-3 and MBP in the brain tissues using qPCR and Western blotting. Immunofluorescence assay was used to detect the apoptosis of the oligodendrocytes at 8 h after the injection and the myelination of the corpus callosum and internal capsule at 24 h.@*RESULTS@#Compared with the control group, the neonatal rats with propofol injections showed significantly down-regulated expressions of mRNA and MBP protein in the brain tissue ( < 0.05). Propofol dose-dependently increased the transcription level of caspase-3 and the protein levels of cleaved caspase-3 at 8 h after the injection ( < 0.05). Propofol injection significantly increased the apoptosis of the oligodendrocytes, and the effect was significantly stronger in 50 and 100 mg/kg groups than in 25 mg/kg group ( < 0.05). At 24 h after propofol injection, myelin formation was significantly decreased in the corpus callosum of the neonatal rats in 100 mg/kg propofol group and in the internal capsule in 50 and 100 mg/kg groups ( < 0.05).@*CONCLUSIONS@#In neonatal SD rats, propofol can dose-dependently promote oligodendrocyte apoptosis, decrease MBP expressions in the brain, and suppress myelin formation in the corpus callosum and the internal capsule.


Subject(s)
Animals , Rats , Myelin Basic Protein , Oligodendroglia , Propofol , RNA, Messenger , Rats, Sprague-Dawley
3.
Rev. Assoc. Med. Bras. (1992) ; 64(1): 41-46, Jan. 2018. tab, graf
Article in English | LILACS | ID: biblio-896422

ABSTRACT

Summary Objective: To investigate the neuropsychological characteristics and changes in CRP, S100B, MBP, HSP-7, and NSE in serum. Method: Sixty-six (66) patients treated in our hospital as CCCI group were chosen for our study, and 90 patients with depression were selected as the depression group. The patients in both groups were examined with CT perfusion, depression, anxiety and cognition evaluation. Their serum CRP, S100B, MBP, HSP-70 and NSE levels were detected. Neuropsychological and serum markers characteristics were compared. Results: The CBF and CBV in bilateral basal ganglia, frontal lobes, greater oval center, brain stem, and left and right regions of occipital lobes of the patients in CCCI group were significantly lower than in the depression group. The HAMD and HAMA scores of CCCI group patients were significantly lower than in the depression group; CCCI group performed better regarding attention, memory, abstract terms and delayed recall. CCCI also had significantly higher total scores than the depression group. Serum CRP, S100B, MBP, HSP-70 and NSE levels in CCCI group were significantly higher than in the depression group. The differences reach statistical significance (p<0.05). Conclusion: CCCI patients who are accompanied by minor depressive disorder have different degrees of cognitive impairment and experience a significant rise in serum CRP, S100B, MBP, HSP-70 and NSE.


Subject(s)
Humans , Male , Female , Aged , Anxiety/diagnosis , Biomarkers/blood , Cerebrovascular Circulation/physiology , Cerebrovascular Disorders/blood , Depressive Disorder/diagnosis , Phosphopyruvate Hydratase/blood , C-Reactive Protein/analysis , Tomography, X-Ray Computed , Cerebrovascular Disorders/diagnosis , Cerebrovascular Disorders/physiopathology , Polymerase Chain Reaction , Chronic Disease , Risk Factors , HSP70 Heat-Shock Proteins/blood , Myelin Basic Protein/blood , S100 Calcium Binding Protein beta Subunit/blood , Middle Aged , Neuropsychological Tests
4.
Anatomy & Cell Biology ; : 292-298, 2018.
Article in English | WPRIM | ID: wpr-718950

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune central nervous system disease characterized by inflammation with oxidative stress. The aim of this study was to evaluate an anti-inflammatory effect of Ishige okamurae on EAE-induced paralysis in rats. An ethanolic extract of I. okamurae significantly delayed the first onset and reduced the duration and severity of hind-limb paralysis. The neuropathological and immunohistochemical findings in the spinal cord were in agreement with these clinical results. T-cell proliferation assay revealed that the ethyl-acetate fraction of I. okamurae suppressed the proliferation of myelin basic protein reactive T cells from EAE affected rats. Flow cytometric analysis showed TCRαβ+ T cells was significantly reduced in the spleen of EAE rats with I. okamurae treatment with concurrent decrease of inflammatory mediators including tumor necrosis factor-α and cyclooxygenase-2. Collectively, it is postulated that I. okamurae ameliorates EAE paralysis with suppression of T-cell proliferation as well as decrease of pro-inflammatory mediators as far as rat EAE is concerned.


Subject(s)
Animals , Rats , Central Nervous System , Cyclooxygenase 2 , Encephalomyelitis, Autoimmune, Experimental , Ethanol , Inflammation , Myelin Basic Protein , Necrosis , Oxidative Stress , Paralysis , Spinal Cord , Spleen , T-Lymphocytes
5.
Laboratory Animal Research ; : 176-184, 2018.
Article in English | WPRIM | ID: wpr-718851

ABSTRACT

In this study, we observed chronological changes in the immunoreactivity and expression level of myelin basic protein (MBP), one of the most abundant proteins in the central nervous system, in the hippocampus of Zucker diabetic fatty (ZDF) rats and their control littermates (Zucker lean control; ZLC). In the ZLC group, body weight steadily increased with age; the body weight of the ZDF group, however, peaked at 30 weeks of age, and subsequently decreased. Based on the changes of body weight, animals were divided into the following six groups: early (12-week), middle (30-week), and chronic (52-week) diabetic groups and their controls. MBP immunoreactivity was found in the alveus, strata pyramidale, and lacunosum-moleculare of the CA1 region, strata pyramidale and radiatum of the CA3 region, and subgranular zone, polymorphic layer, and molecular layer of the dentate gyrus. MBP immunoreactivity was lowest in the hippocampus of 12-week-old rats in the ZLC group, and highest in 12-week-old rats in the ZDF group. Diabetes increased MBP levels in the 12-week-old group, while MBP immunoreactivity decreased in the 30-week-old group. In the 52-week-old ZLC and ZDF groups, MBP immunoreactivity was detected in the hippocampus, similar to the 30-week-old ZDF group. Western blot results corroborated with immunohistochemical results. These results suggested that changes in the immunoreactivity and expression of MBP in the hippocampus might be a compensatory response to aging, while the sustained levels of MBP in diabetic animals could be attributed to a loss of compensatory responses in oligodendrocytes.


Subject(s)
Animals , Rats , Aging , Blotting, Western , Body Weight , Central Nervous System , Dentate Gyrus , Hippocampus , Models, Animal , Myelin Basic Protein , Myelin Sheath , Oligodendroglia
6.
Neuroscience Bulletin ; (6): 527-533, 2018.
Article in English | WPRIM | ID: wpr-777035

ABSTRACT

Oligodendrocytes (OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK (apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYK-deficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.


Subject(s)
Animals , Mice , Rats , Animals, Newborn , Apoptosis Regulatory Proteins , Genetics , Metabolism , Cell Differentiation , Physiology , Cell Proliferation , Genetics , Cells, Cultured , Cuprizone , Toxicity , Demyelinating Diseases , Metabolism , Pathology , Embryo, Mammalian , Gene Expression Regulation, Developmental , Genetics , Ki-67 Antigen , Metabolism , Mice, Inbred C57BL , Myelin Basic Protein , Metabolism , Myelin Proteolipid Protein , Metabolism , Myelin Sheath , Metabolism , Oligodendroglia , Metabolism , Protein-Tyrosine Kinases , Genetics , Metabolism , RNA, Small Interfering , Genetics , Metabolism , Rats, Sprague-Dawley
7.
Journal of Veterinary Science ; : 750-758, 2018.
Article in English | WPRIM | ID: wpr-758872

ABSTRACT

Influenza virus infection is a zoonosis that has great socioeconomic effects worldwide. Influenza infection induces respiratory symptoms, while the influenza virus can infect brain and leave central nervous system sequelae. As children are more vulnerable to infection, they are at risk of long-term neurological effects once their brains are infected. We previously demonstrated that functional changes in hippocampal neurons were observed in mice recovered from neonatal influenza infection. In this study, we investigated changes in myelination properties that could affect neural dysfunction. Mice were infected with the influenza virus on postnatal day 5. Tissues were harvested from recovered mice 21-days post-infection. The expression levels for myelin basic protein (MBP) were determined, and immunohistochemical staining and transmission electron microscopy were performed. Real-time polymerase chain reaction and Western blot analyses showed that mRNA and protein expressions increased in the hippocampus and cerebellum of recovered mice. Increased MBP-staining signal was observed in the recovered mouse brain. By calculating the relative thickness of myelin sheath in relation to nerve fiber diameter (G-ratio) from electron photomicrographs, an increased G-ratio was observed in both the hippocampus and cerebellum of recovered mice. Influenza infection in oligodendrocyte-enriched primary brain cell cultures showed that proinflammatory cytokines may induce MBP upregulation. These results suggested that increased MBP expression could be a compensatory change related to hypomyelination, which may underlie neural dysfunction in recovered mice. In summary, the present results demonstrate that influenza infection during the neonatal period affects myelination and further induces functional changes in influenza-recovered mouse brain.


Subject(s)
Animals , Child , Humans , Mice , Blotting, Western , Brain , Cell Culture Techniques , Central Nervous System , Cerebellum , Cytokines , Hippocampus , Influenza, Human , Microscopy, Electron, Transmission , Myelin Basic Protein , Myelin Sheath , Nerve Fibers , Neurons , Oligodendroglia , Orthomyxoviridae , Real-Time Polymerase Chain Reaction , RNA, Messenger , Up-Regulation
8.
Einstein (Säo Paulo) ; 15(1): 100-104, Jan.-Mar. 2017.
Article in English | LILACS | ID: biblio-840285

ABSTRACT

ABSTRACT The cerebrospinal fluid analysis has been employed for supporting multiple sclerosis diagnosis and ruling out the differential diagnoses. The most classical findings reflect the inflammatory nature of the disease, including mild pleocytosis, mild protein increase, intrathecal synthesis of immunoglobulin G, and, most typically, the presence of oligoclonal bands. In recent years, new biomarkers have emerged in the context of multiple sclerosis. The search for new biomarkers reflect the need of a better evaluation of disease activity, disease progression, and treatment efficiency. A more refined evaluation of disease and therapy status can contribute to better therapeutic choices, particularly in escalation of therapies. This is very relevant taking into account the availability of a greater number of drugs for multiple sclerosis treatment in recent years. In this review, we critically evaluate the current literature regarding the most important cerebrospinal fluid biomarkers in multiple sclerosis. The determination of biomarkers levels, such as chemokine ligand 13, fetuin A, and mainly light neurofilament has shown promising results in the evaluation of this disease, providing information that along with clinical and neuroimaging data may contribute to better therapeutic decisions.


RESUMO A análise do líquido cefalorraquidiano tem sido empregada para avaliação diagnóstica da esclerose múltipla e a exclusão dos diagnósticos diferenciais. Os achados clássicos refletem a natureza inflamatória da doença, incluindo discreta pleocitose, leve hiperproteinorraquia, aumento da síntese intratecal de imunoglobulina G e, mais tipicamente, a presença de bandas oligoclonais. Nos últimos anos, surgiram novos biomarcadores para esclerose múltipla, e esta busca por marcadores reflete a necessidade de melhor avaliar a atividade e a progressão da doença, bem como a eficácia terapêutica. Uma avaliação mais refinada da atividade da doença e da resposta aos medicamentos pode contribuir para melhores decisões terapêuticas, particularmente no que se refere à troca de medicação. Isto é muito importante nos dias de hoje, quando surgem novas opções medicamentosas. Neste artigo de revisão, avaliamos criticamente a literatura atual referente aos novos marcadores liquóricos na esclerose múltipla. A mensuração destes marcadores, como a quimiocina CXCL13, fetuína A e, principalmente, o neurofilamento de cadeia leve, demonstrou resultados promissores na avaliação da doença, provendo informações que, em conjunto com dados clínicos e de neuroimagem, podem contribuir para melhores decisões terapêuticas.


Subject(s)
Humans , Multiple Sclerosis/cerebrospinal fluid , Intermediate Filaments , Biomarkers/cerebrospinal fluid , Cytokines/cerebrospinal fluid , Disease Progression , Myelin Basic Protein/cerebrospinal fluid , alpha-2-HS-Glycoprotein/cerebrospinal fluid
9.
Laboratory Animal Research ; : 237-243, 2017.
Article in English | WPRIM | ID: wpr-101375

ABSTRACT

Myelin degeneration is one of the characteristics of aging and degenerative diseases. This study investigated age-related alterations in expression of myelin basic protein (MBP) in the hippocampal subregions (dentate gyrus, CA2/3 and CA1 areas) of gerbils of various ages; young (1 month), adult (6 months) and aged (24 months), using western blot and immunohistochemistry. Western blot results showed tendencies of age-related reductions of MBP levels. MBP immunoreactivity was significantly decreased with age in synaptic sites of trisynaptic loops, perforant paths, mossy fibers, and Schaffer collaterals. In particular, MBP immunoreactive fibers in the dentate molecular cell layer (perforant path) was significantly reduced in adult and aged subjects. In addition, MBP immunoreactive mossy fibers in the dentate polymorphic layer and in the CA3 striatum radiatum was significantly decreased in the aged group. Furthermore, we observed similar age-related alterations in the CA1 stratum radiatum (Schaffer collaterals). However, the density of MBP immunoreactive fibers in the dentate granular cell layer and CA stratum pyramidale was decreased with aging. These findings indicate that expression of MBP is age-dependent and tissue specific according to hippocampal layers.


Subject(s)
Adult , Humans , Aging , Blotting, Western , CA1 Region, Hippocampal , Gerbillinae , Hippocampus , Immunohistochemistry , Myelin Basic Protein , Myelin Sheath , Perforant Pathway
10.
Chinese Journal of Contemporary Pediatrics ; (12): 947-952, 2016.
Article in Chinese | WPRIM | ID: wpr-340589

ABSTRACT

<p><b>OBJECTIVE</b>To study the relationship between the levels of erythropoietin (EPO) in serum and brain injury in preterm infants.</p><p><b>METHODS</b>Three hundred and four preterm infants (gestational age: 28-34 weeks) born between October 2014 and September 2015 were enrolled in this study. Brain injury was diagnosed using cerebral ultrasound and MRI. The levels of EPO, S100 protein, neuron-specific enolase (NSE) and myelin basic protein (MBP) in serum were detected using ELISA. To compare the incidence of brain injury in different serum EPO levels in preterm infants, and the relationship between brain injury and serum EPO levels was analyzed.</p><p><b>RESULTS</b>The incidence rate of brain injury in preterm infants was 41.1% (125/304). The incidence rate of brain injury in the low EPO level group was significantly higher than that in the middle-high EPO level groups (P<0.01). The serum levels of S100 protein, NSE, and MBP in the brain injury groups were significantly higher than in the control group (P<0.01). The serum EPO levels were negatively correlated with serum S100 protein concentration and NSE levels (P<0.05). According to the multiple logistic regression analysis, low gestational age, low birth weight, asphyxia, prolonged mechanical ventilation, anemia and low serum EPO levels were the risk factor for brain injury in preterm infants.</p><p><b>CONCLUSIONS</b>There is a higher incidence rate of brain injury in preterm infants with lower serum EPO levels. The serum EPO levels may be correlated with brain injury in preterm infants.</p>


Subject(s)
Female , Humans , Infant, Newborn , Male , Brain Injuries , Blood , Epidemiology , Erythropoietin , Blood , Infant, Premature , Blood , Myelin Basic Protein , Blood
11.
Chinese Medical Journal ; (24): 831-837, 2016.
Article in English | WPRIM | ID: wpr-328147

ABSTRACT

<p><b>BACKGROUND</b>The interaction between activated microglia and T lymphocytes can yield abundant pro-inflammatory cytokines. Our previous study proved that thymus immune tolerance could alleviate the inflammatory response. This study aimed to investigate whether intrathymic injection of myelin basic protein (MBP) in mice could suppress the inflammatory response after co-culture of T lymphocytes and BV-2 microglia cells.</p><p><b>METHODS</b>Totally, 72 male C57BL/6 mice were randomly assigned to three groups (n = 24 in each): Group A: intrathymic injection of 100 μl MBP (1 mg/ml); Group B: intrathymic injection of 100 μl phosphate-buffered saline (PBS); and Group C: sham operation group. Every eight mice in each group were sacrificed to obtain the spleen at postoperative days 3, 7, and 14, respectively. T lymphocytes those were extracted and purified from the spleens were then co-cultured with activated BV-2 microglia cells at a proportion of 1:2 in the medium containing MBP for 3 days. After identified the T lymphocytes by CD3, surface antigens of T lymphocytes (CD4, CD8, CD152, and CD154) and BV-2 microglia cells (CD45 and CD54) were detected by flow cytometry. The expressions of pro-inflammatory factors of BV-2 microglia cells (interleukin [IL]-1β, tumor necrosis factor-α [TNF-α], and inducible nitric oxide synthase [iNOS]) were detected by quantitative real-time polymerase chain reaction (PCR). One-way analysis of variance (ANOVA) and the least significant difference test were used for data analysis.</p><p><b>RESULTS</b>The levels of CD152 in Group A showed an upward trend from the 3rd to 7th day, with a downward trend from the 7th to 14th day (20.12 ± 0.71%, 30.71 ± 1.14%, 13.50 ± 0.71% at postoperative days 3, 7, and 14, respectively, P < 0.05). The levels of CD154 in Group A showed a downward trend from the 3rd to 7th day, with an upward trend from the 7th to 14th day (10.00 ± 0.23%, 5.28 ± 0.69%, 14.67 ± 2.71% at postoperative days 3, 7, and 14, respectively, P < 0.05). The ratio of CD4+/CD8 + T in Group A showed a downward trend from the 3rd to 7th day, with the minimum at postoperative day 7, then an upward trend from the 7th to 14th day (P < 0.05). Meanwhile, the levels of CD45 and CD54 in Group A were found as the same trend as the ratio of CD4+/CD8 + T (CD45: 83.39 ± 2.56%, 82.74 ± 2.09%, 87.56 ± 2.11%; CD54: 3.80 ± 0.24%, 0.94 ± 0.40%, 3.41 ± 0.33% at postoperative days 3, 7, and 14, respectively, P < 0.05). The expressions of TNF-α, IL-1β, and iNOS in Group A were significantly lower than those in Groups B and C, and the values at postoperative day 7 were the lowest compared with those at postoperative days 3 and 14 (P < 0.05). No significant difference was found between Groups B and C.</p><p><b>CONCLUSIONS</b>Intrathymic injection of MBP could suppress the immune reaction that might reduce the secondary immune injury of brain tissue induced by an inflammatory response.</p>


Subject(s)
Animals , Male , Mice , Anti-Inflammatory Agents , Pharmacology , Antigens, Surface , Brain Injuries, Traumatic , Drug Therapy , CD4-CD8 Ratio , Coculture Techniques , Mice, Inbred C57BL , Microglia , Allergy and Immunology , Myelin Basic Protein , Pharmacology , T-Lymphocytes , Allergy and Immunology
12.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 31-36, 2016.
Article in English | WPRIM | ID: wpr-250311

ABSTRACT

Emerging evidence indicates that microglia activation plays an important role in spinal cord injury (SCI) caused by trauma. Studies have found that inhibiting the Rho/Rho-associated protein kinase (ROCK) signaling pathway can reduce inflammatory cytokine production by microglia. In this study, Western blotting was conducted to detect ROCK2 expression after the SCI; the ROCK Activity Assay kit was used for assay of ROCK pathway activity; microglia morphology was examined using the CD11b antibody; electron microscopy was used to detect microglia phagocytosis; TUNEL was used to detect tissue cell apoptosis; myelin staining was performed using an antibody against myelin basic protein (MBP); behavioral outcomes were evaluated according to the methods of Basso, Beattie, and Bresnahan (BBB). We observed an increase in ROCK activity and microglial activation after SCI. The microglia became larger and rounder and contained myelin-like substances. Furthermore, treatment with fasudil inhibited neuronal cells apoptosis, alleviated demyelination and the formation of cavities, and improved motor recovery. The experimental evidence reveals that the ROCK inhibitor fasudil can regulate microglial activation, promote cell phagocytosis, and improve the SCI microenvironment to promote SCI repair. Thus, fasudil may be useful for the treatment of SCI.


Subject(s)
Animals , Male , Rats , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Pharmacology , Therapeutic Uses , Apoptosis , Microglia , Metabolism , Myelin Basic Protein , Metabolism , Myelin Sheath , Metabolism , Phagocytosis , Protein Kinase Inhibitors , Pharmacology , Therapeutic Uses , Rats, Sprague-Dawley , Spinal Cord Injuries , Drug Therapy , rho-Associated Kinases , Metabolism
13.
Journal of Korean Medical Science ; : 171-177, 2016.
Article in English | WPRIM | ID: wpr-133743

ABSTRACT

We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.


Subject(s)
Animals , Humans , Mice , Brain/pathology , Cell Differentiation/drug effects , Cells, Cultured , Culture Media/chemistry , Dental Pulp/cytology , Dopaminergic Neurons/cytology , Enzyme-Linked Immunosorbent Assay , Glial Fibrillary Acidic Protein/genetics , Mice, Inbred ICR , Myelin Basic Protein/genetics , Real-Time Polymerase Chain Reaction , Stage-Specific Embryonic Antigens/genetics , Stem Cells/cytology , Tubulin/genetics , Tyrosine 3-Monooxygenase/analysis
14.
Journal of Korean Medical Science ; : 171-177, 2016.
Article in English | WPRIM | ID: wpr-133742

ABSTRACT

We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.


Subject(s)
Animals , Humans , Mice , Brain/pathology , Cell Differentiation/drug effects , Cells, Cultured , Culture Media/chemistry , Dental Pulp/cytology , Dopaminergic Neurons/cytology , Enzyme-Linked Immunosorbent Assay , Glial Fibrillary Acidic Protein/genetics , Mice, Inbred ICR , Myelin Basic Protein/genetics , Real-Time Polymerase Chain Reaction , Stage-Specific Embryonic Antigens/genetics , Stem Cells/cytology , Tubulin/genetics , Tyrosine 3-Monooxygenase/analysis
15.
Chinese Journal of Contemporary Pediatrics ; (12): 984-988, 2015.
Article in Chinese | WPRIM | ID: wpr-279011

ABSTRACT

<p><b>OBJECTIVE</b>To study the effects of caffeine citrate on myelin basic protein (MBP) expression in the cerebral white matter of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the related mechanism.</p><p><b>METHODS</b>Forty-eight seven-day-old Sprague-Dawley neonatal rats were randomly assigned to 3 groups: sham operation (n=16), HIBD (n=16) and HIBD+caffeine citrate (n=16). The rats in the HIBD and HIBD+caffeine citrate groups were subjected to left common carotid artery ligation, and then were exposed to 80 mL/L oxygen and 920 mL/L nitrogen for 2 hours to induce HIBD. The rats in the sham operation group were only subjected to a sham operation, without the left common carotid artery ligation or hypoxia exposure. Caffeine citrate (20 mg/kg) was injected intraperitoneally before hypoxia ischemia (HI) and immediately, 24 hours, 48 hours and 72 hours after HI. The other two groups were injected intraperitoneally with an equal volume of normal saline at the corresponding time points. On postnatal day 12, the expression of MBP in the left subcortical white matter was detected by immunohistochemistry, and the levels of adenosine A1 receptor mRNA and A2a receptor mRNA in the left brain were detected by real-time PCR.</p><p><b>RESULTS</b>The expression of MBP in the left subcortical white matter in the HIBD group was lower than in the sham operation group (P<0.05). The MBP expression in the HIBD+caffeine citrate group was significantly higher than in the HIBD group, but was still lower than the sham operation group (P<0.05). Real-time PCR showed that the adenosine A1 receptor mRNA expression was significantly higher in the HIBD group than in the sham operation group, and it was significantly lower in the HIBD+caffeine citrate group than in the HIBD group (P<0.05).</p><p><b>CONCLUSIONS</b>Caffeine citrate can improve brain white matter damage following HIBD in neonatal rats and the protection mechanism might be related with the down-regulation of adenosine A1 receptor expression.</p>


Subject(s)
Animals , Female , Male , Rats , Animals, Newborn , Caffeine , Pharmacology , Citrates , Pharmacology , Hypoxia-Ischemia, Brain , Drug Therapy , Metabolism , Pathology , Myelin Basic Protein , RNA, Messenger , Rats, Sprague-Dawley , Receptor, Adenosine A1 , Genetics , Receptor, Adenosine A2A , Genetics , White Matter , Chemistry
16.
Chinese Journal of Contemporary Pediatrics ; (12): 1260-1264, 2014.
Article in Chinese | WPRIM | ID: wpr-289490

ABSTRACT

<p><b>OBJECTIVE</b>To study the effects of perinatal recurrent infection on the brain development in immature mice.</p><p><b>METHODS</b>Six pregnant C57BL6 mice were randomly assigned to three groups: intrauterine infection, perinatal recurrent infection and control. The intrauterine infection group was intraperitoneally injected with LPS (0.5 mg/kg) on the 18th day of pregnancy. The perinatal recurrent infection group was injected with LPS (0.5 mg/kg) on the 18th day of pregnancy and their offsprings were intraperitoneally injected with the same dose of LPS daily from postnatal day 3 to 12. The control group was administered with normal saline at the same time points as the recurrent infection group. The short-time neurobehaviors were assessed on postnatal day 13. The mice were then sacrificed to measure brain weights and neuropathological changes using cresyl violet staining. Western blot was used to evaluate the expression of TNF-α, Caspase-3 and myelin basic protein (MBP).</p><p><b>RESULTS</b>The brain weights of the recurrent infection group were significantly lower than the control and intrauterine infection groups (P<0.05) and the recurrent infection group displayed significant neuropathological changes. Perinatal recurrent infection resulted in increased expression levels of TNF-α and Caspase-3, and decreased expression level of MBP compared with the intrauterine infection and control groups (P<0.01). The neurobehavior test showed that the recurrent infection group used longer time in gait reflex, right reflex and geotaxis reflex compared with the control and intrauterine infection groups on postnatal day 13 (P<0.05).</p><p><b>CONCLUSIONS</b>Perinatal recurrent infection may exacerbate inflammatory response and cell death in the immature brain, which may be one of the important factors for perinatal brain injury.</p>


Subject(s)
Animals , Female , Mice , Pregnancy , Animals, Newborn , Bacterial Infections , Body Weight , Brain , Pathology , Caspase 3 , Mice, Inbred C57BL , Myelin Basic Protein , Recurrence , Reflex
17.
Chinese Journal of Traumatology ; (6): 225-229, 2013.
Article in English | WPRIM | ID: wpr-325705

ABSTRACT

<p><b>OBJECTIVE</b>To study the role and effect of Schwann cells (SCs) remyelination in contused spinal cord.</p><p><b>METHODS</b>Green fluorescence protein expressing-SCs were transplanted into the epicenter, rostral and caudal tissues of the injury site at 1 week after the spinal cords were contused. At 6 weeks, the spinal cords were removed for cryosections, semithin sections and ultrathin sections, and then immunocytochemical staining of myelin basic protein (MBP), P0 protein (P0) and S100 protein (S100) was carried out on the cryosections. Qualitative and semiquantitative analyses were performed on the cryosections and semithin sections. Ultrastructure of myelinated fibers was observed on the ultrathin sections under electron microscope.</p><p><b>RESULTS</b>Transplanted SCs and myelinated fibers immunocytochemically labeled by MBP, P0 as well as S100 distributed in whole injured area. The quantity of myelinated fibers labeled by the three myelin proteins showed no statistical difference, however, which was significantly larger than that of controls. On the semithin sections, the experimental group demonstrated more myelinated fibers in the injured area than the controls, but the fibers had smaller diameter and thinner myelin sheath under electron microscope.</p><p><b>CONCLUSION</b>SCs can promote regeneration of injured nerve fibers and enhance remyelination, which may be histological basis of SCs-mediated functional repair of injured spinal cords.</p>


Subject(s)
Animals , Rats , Immunohistochemistry , Microscopy, Electron , Myelin Basic Protein , Metabolism , Myelin P0 Protein , Metabolism , Nerve Regeneration , Physiology , Rats, Sprague-Dawley , S100 Proteins , Metabolism , Schwann Cells , Physiology , Spinal Cord Injuries , Metabolism
18.
Korean Journal of Veterinary Research ; : 99-104, 2012.
Article in English | WPRIM | ID: wpr-149236

ABSTRACT

The present study was performed to evaluate the relationship between the neurotoxicity of acrylamide and the differential gene expression pattern in mice. Both locomotor test and rota-rod test showed that the group treated with higher than 30 mg/kg/day of acrylamide caused impaired motor activity in mice. Based on cDNA microarray analysis of mouse brain, myelin basic protein gene, kinesin family member 5B gene, and fibroblast growth factor (FGF) 1 and its receptor genes were down-regulated by acrylamide. The genes are known to be essential for neurofilament synthesis, axonal transport, and neuro-protection, respectively. Interestingly, both FGF 1 and its receptor genes were down-regulated. Genes involved in nucleic acid binding such as AU RNA binding protein/enoyl-coA hydratase, translation initiation factor (TIF) 2 alpha kinase 4, activating transcription factor 2, and U2AF 1 related sequence 1 genes were down-regulated. More interesting finding was that genes of both catalytic and regulatory subunit of protein phosphatases which are important for signal transduction pathways were down-regulated. Here, we propose that acrylamide induces neurotoxicity by regulation of genes associated with neurofilament synthesis, axonal transport, neuro-protection, and signal transduction pathways.


Subject(s)
Animals , Humans , Mice , Acrylamide , Activating Transcription Factor 2 , Axonal Transport , Brain , Fibroblast Growth Factors , Gene Expression , Kinesins , Motor Activity , Myelin Basic Protein , Oligonucleotide Array Sequence Analysis , Peptide Initiation Factors , Phosphoprotein Phosphatases , Phosphotransferases , RNA , Signal Transduction
19.
Anatomy & Cell Biology ; : 141-148, 2012.
Article in English | WPRIM | ID: wpr-125844

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) in Lewis rats is an acute monophasic paralytic central nervous system disease, in which most rats spontaneously recover from paralysis. EAE in Lewis rats is induced by encephalitogenic antigens, including myelin basic protein. EAE is mediated by CD4+ Th1 cells, which secrete pro-inflammatory mediators, and spontaneous recovery is mediated by regulatory T cells. Recently, it was established that classically activated macrophages (M1 phenotype) play an important role in the initiation of EAE, while alternatively activated macrophages (M2 phenotype) contribute to spontaneous recovery from rat EAE. This review will summarize the neuroimmunological aspects of active monophasic EAE, which manifests as neuroinflammation followed by neuroimmunomodulation and/or neuroprotection, with a focus on the role of alternatively activated macrophages.


Subject(s)
Animals , Rats , Central Nervous System , Encephalomyelitis, Autoimmune, Experimental , Macrophages , Myelin Basic Protein , Neuroimmunomodulation , Paralysis , T-Lymphocytes, Regulatory , Th1 Cells
20.
Journal of Clinical Laboratory [The]. 2011; 6 (1): 21-26
in Arabic | IMEMR | ID: emr-180767

ABSTRACT

Myelin basic protein [MBP] is an important part of myelin sheets, and it's breakdown plays an important role in many nervous diseases, and it was thought that the destruction of MBP occur by the formation of MBP antibodies. So the aim of our study is to detect the differences of MBP and MBP-Abs levels between the patients with multiple sclerosis [MS], autism and epilepsy and apparently healthy controls. the study group involved 92 samples [32 patients with autism, 19 patients with MS, 20 patients with epilepsy, 21 controls], and the determination of MBP and MBP-Abs was achieved by the enzyme-linked immune sorbent assay [ELISA]. the ratio of MBP was higher in the patients with MS [53%], and autism [31%] than the patients with epilepsy [10%], and healthy control [5%]. the ratio of MBP-Abs was higher in the patients with MS [36%], and autism [38%] than the patients with epilepsy [15%] and healthy control [5%]. The presence of MBP or MBP-Abs in the patient's serum indicate to the presence of autoimmune problem and may help to direct the treatment


Subject(s)
Humans , Myelin Basic Protein/immunology , Autistic Disorder/blood , Multiple Sclerosis/blood , Epilepsy/blood , Antibodies/blood
SELECTION OF CITATIONS
SEARCH DETAIL